Penerapan Algoritma Decision Tree Dalam Melakukan Analisis Klasifikasi Harga Handphone
DOI:
https://doi.org/10.59581/jusiik-widyakarya.v1i4.1861Keywords:
Decision Tree, Classification, Smartphone PriceAbstract
The use of the Decision Tree method in smartphone price classification is the focus of this study. By using the 10 most relevant features and data normalization to achieve scale consistency, the Decision Tree algorithm delivers an average accuracy of 81%. Although some false positives and false negatives occur, the model is able to classify smartphone prices well, especially in identifying low and high prices. These results provide important insights into the features that affect smartphone prices. While there is still room for improvement, this model provides a solid foundation for the smartphone industry to determine prices based on certain specifications. The importance of relevant feature selection and data normalization was revealed in this study. Despite the accuracy reaching 81%, improvements in the classification of medium and high price classes are still possible to reduce prediction errors. This method provides an important basis for the smartphone industry to set prices based on specifications, and data mining techniques such as Decision Tree can be improved to improve the accuracy of future price predictions.
References
Abdillah, M. A. A. S. A. S. (2020). Implementasi Decision Tree Algoritma C4.5 Untuk Memprediksi Kesuksesan Pendidikan Karakter. Jurnal Teknologi Informasi, 15, 59–69.
Arisusanto, A., Suarna, N., & Dwilestari, G. (2023). Analisa Klasifikasi Data Harga Handphone Menggunakan Algoritma Random Forest Dengan Optimize Parameter Grid. Jurnal Teknologi Ilmu Komputer, 1(2), 43–47. https://doi.org/10.56854/jtik.v1i2.51
Fauziningrum, E., & Sulistyaningsih, E. I. (2021). Penerapan Data Mining Metode Decision Tree Untuk Mengukur Penguasaan Bahasa Inggris Maritim (Studi Kasus Di Universitas Maritim Amni). JURNAL SAINS DAN TEKNOLOGI MARITIM, 22(1), 41–50.
Gupta, A. (2022). Mobile Price Classification. Kaggle.Com.
Han, J. K. M. P. J. (2012). Data Mining Concepts and Techniques (Third). Elsevier.
Larose, D. T. L. C. D. (2014). DISCOVERING KNOWLEDGE IN DATA An Introduction to Data Mining (Second). John Wiley & Sons, Inc.
Muslim, M. A., Prasetiyo, B., Harum, E. L., & Hardiyanti, S. (2019). Data Mining Algoritma C4.5 (1st ed.).
oleh Mahasiswa, P. P. J. R. (2019). Implementasi Metode Decision Tree Klasifikasi Data Mining Untuk. Jurnal Teknik Komputer, 5(2).
Setiawati, I., Wibowo, A. P., Hermawan, A., Teknologi, M., Universitas, I., & Yogyakarta, T. (2019). IMPLEMENTASI DECISION TREE UNTUK MENDIAGNOSIS PENYAKIT LIVER (Vol. 1, Issue 1).
Sutoyo, I. (2018). IMPLEMENTASI ALGORITMA DECISION TREE UNTUK KLASIFIKASI DATA PESERTA DIDIK. 14(2). www.bsi.ac.id
Syah, R. D. (2020). Metode Decision Tree Untuk Klasifikasi Hasil Seleksi Kompetensi Dasar Pada Cpns 2019 Di Arsip Nasional Republik Indonesia. Jurnal Ilmiah Informatika Komputer, 25(2), 107–114.
Ye, N. (2014). Data Mining Theories, Algorithms, and Examples. CRC Press.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ahmad Taufiq Ramadhan, Faishal Hilmy F. G, Nadya Rafaela Puteri, Alifya Meirza
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.