Analisis Sentimen Terhadap Penutupan Tiktok Shop Dengan Metode Naive Bayes
DOI:
https://doi.org/10.59581/jusiik-widyakarya.v2i3.3948Keywords:
Sentiment Analysis, Tiktok Shop, Preprocessing, Naive Bayes, StreamlitAbstract
Nowadays, advances in information and communication technology have had a major impact on various sectors of life, including in the field of trade and e-commerce. However, as it happens in the scope of social media, TikTok Shop is also dealing with challenges and changes. One of the issues that is sticking out and is currently hot is the permanent closure of the TikTok Shop feature that has occurred in Indonesia. This research will carry out several processes starting with data collection, then data labeling, data preprocessing, data sharing, weighting training data, using the Naive Bayes method, and ending with testing. In this study, the results of the implementation that has been made or built are discussed. The method used is the Naive Bayes Classifier Method to classify training data as much as 800 data, which is 80% of the total data. Then, testing is carried out using 200 testing data, which is 20% of the total data. The evaluation results show an accuracy value of 73%. In addition to the accuracy value, this research also recorded the precision, recall, and F1 score values. The classification that appears most often and contributes the highest in these values is the Positive classification as much as 420 data or 42% of the total data used..
References
Artanti, D. P., Syukur, A., Prihandono, A., & Setiadi, D. R. I. M. (2018). Analisa sentimen untuk penilaian pelayanan situs belanja online menggunakan algoritma Naïve Bayes (pp. 8–9).
Fahmi, M., & Riski, M. (2022). Analisis faktor internal pada Tiktok Shop. Jurnal Ekonomi dan Bisnis, 3(01), 58–65. http://ojs.iai-darussalam.ac.id/index.php/ekobis/article/view/416
Jumadi, A., Istiqomah, N. N., & Tentua, M. N. (2020). Klasifikasi evaluasi asisten pengajar dengan menggunakan metode KNN dan Naive Bayes. Jurnal Nasional Teknologi dan Sistem Informasi, 2(3), 31–40. doi: 10.25077/teknosi.v2i3.2016.31-40
Lane, H., Howard, C., & Hapke, H. M. (2018). MEAP edition Manning Early Access Program Natural Language Processing in Action Understanding, analyzing, and generating text with Python (p. 512). Retrieved from www.manning.com
Nanda, A. P., Hartati, S., & Dian. (2022). Pemanfatan teknologi informasi (marketplace)/sosial media untuk perkembangan UMKM di Desa Ambarawa Barat dalam masa pandemi. Jurnal Pengabdian Masyarakat Tapis Berseri, 1(1), 10–15. doi: 10.36448/jpmtb.v1i1.3
Nurbagja, K., et al. (2023). Sentiment analysis of the increase in fuel prices using random forest classifier method. Bulletin Ilmiah Sarjana Teknik Elektro, 5(1), 132–144. doi: 10.12928/biste.v5i1.7414
Putri, S. B., Anisa, Y. N., & Saputra, N. (2022). Analisis sentimen film Kuliah Kerja Nyata (KKN) di Desa Penari menggunakan metode Naive Bayes. JuSiTik Jurnal Sistem dan Teknologi Informasi Komunikasi, 5(2), 22–26. doi: 10.32524/jusitik.v5i2.704
Setiani, I., Tentua, M. N., & Oyama, S. (2021). Prediction of banking stock prices using Naïve Bayes method. Journal of Physics: Conference Series, 1823(1). doi: 10.1088/1742-6596/1823/1/012059
Saputra, N. (2015). Analisis sentimen berbasis lexicon dan emoticon (Tesis). Retrieved from https://etd.repository.ugm.ac.id/penelitian/detail/80499
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Sistem Informasi dan Ilmu Komputer
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.