Analisis Sentimen Terhadap Penutupan Tiktok Shop Dengan Metode Naive Bayes

Authors

  • Riyan Fahmi Gunawan Universitas PGRI Yogyakarta
  • Nurirwan Saputra Universitas PGRI Yogyakarta
  • Ari Kusuma Wardana Universitas PGRI Yogyakarta
  • Ahmad Riyadi Universitas PGRI Yogyakarta

DOI:

https://doi.org/10.59581/jusiik-widyakarya.v2i3.3948

Keywords:

Sentiment Analysis, Tiktok Shop, Preprocessing, Naive Bayes, Streamlit

Abstract

Nowadays, advances in information and communication technology have had a major impact on various sectors of life, including in the field of trade and e-commerce. However, as it happens in the scope of social media, TikTok Shop is also dealing with challenges and changes. One of the issues that is sticking out and is currently hot is the permanent closure of the TikTok Shop feature that has occurred in Indonesia. This research will carry out several processes starting with data collection, then data labeling, data preprocessing, data sharing, weighting training data, using the Naive Bayes method, and ending with testing. In this study, the results of the implementation that has been made or built are discussed. The method used is the Naive Bayes Classifier Method to classify training data as much as 800 data, which is 80% of the total data. Then, testing is carried out using 200 testing data, which is 20% of the total data. The evaluation results show an accuracy value of 73%. In addition to the accuracy value, this research also recorded the precision, recall, and F1 score values. The classification that appears most often and contributes the highest in these values is the Positive classification as much as 420 data or 42% of the total data used..

 

 

References

Artanti, D. P., Syukur, A., Prihandono, A., & Setiadi, D. R. I. M. (2018). Analisa sentimen untuk penilaian pelayanan situs belanja online menggunakan algoritma Naïve Bayes (pp. 8–9).

Fahmi, M., & Riski, M. (2022). Analisis faktor internal pada Tiktok Shop. Jurnal Ekonomi dan Bisnis, 3(01), 58–65. http://ojs.iai-darussalam.ac.id/index.php/ekobis/article/view/416

Jumadi, A., Istiqomah, N. N., & Tentua, M. N. (2020). Klasifikasi evaluasi asisten pengajar dengan menggunakan metode KNN dan Naive Bayes. Jurnal Nasional Teknologi dan Sistem Informasi, 2(3), 31–40. doi: 10.25077/teknosi.v2i3.2016.31-40

Lane, H., Howard, C., & Hapke, H. M. (2018). MEAP edition Manning Early Access Program Natural Language Processing in Action Understanding, analyzing, and generating text with Python (p. 512). Retrieved from www.manning.com

Nanda, A. P., Hartati, S., & Dian. (2022). Pemanfatan teknologi informasi (marketplace)/sosial media untuk perkembangan UMKM di Desa Ambarawa Barat dalam masa pandemi. Jurnal Pengabdian Masyarakat Tapis Berseri, 1(1), 10–15. doi: 10.36448/jpmtb.v1i1.3

Nurbagja, K., et al. (2023). Sentiment analysis of the increase in fuel prices using random forest classifier method. Bulletin Ilmiah Sarjana Teknik Elektro, 5(1), 132–144. doi: 10.12928/biste.v5i1.7414

Putri, S. B., Anisa, Y. N., & Saputra, N. (2022). Analisis sentimen film Kuliah Kerja Nyata (KKN) di Desa Penari menggunakan metode Naive Bayes. JuSiTik Jurnal Sistem dan Teknologi Informasi Komunikasi, 5(2), 22–26. doi: 10.32524/jusitik.v5i2.704

Setiani, I., Tentua, M. N., & Oyama, S. (2021). Prediction of banking stock prices using Naïve Bayes method. Journal of Physics: Conference Series, 1823(1). doi: 10.1088/1742-6596/1823/1/012059

Saputra, N. (2015). Analisis sentimen berbasis lexicon dan emoticon (Tesis). Retrieved from https://etd.repository.ugm.ac.id/penelitian/detail/80499

Published

2024-07-18

How to Cite

Riyan Fahmi Gunawan, Nurirwan Saputra, Ari Kusuma Wardana, & Ahmad Riyadi. (2024). Analisis Sentimen Terhadap Penutupan Tiktok Shop Dengan Metode Naive Bayes. Jurnal Sistem Informasi Dan Ilmu Komputer, 2(3), 180–194. https://doi.org/10.59581/jusiik-widyakarya.v2i3.3948

Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.