Klasifikasi Penyakit Demam Berdarah Dengue dengan Menggunakan Algortima K-Mens

Authors

  • Fredi Gaji Universitas Stella Maris Sumba
  • Cecilia D.P.B Gabriel Universitas Stella Maris Sumba
  • Karolus Wulla Rato Universitas Stella Maris Sumba

DOI:

https://doi.org/10.59581/jusiik-widyakarya.v2i4.4251

Keywords:

Dengue Fever, K-Means, Classification, Machine Learning, Infectious Disease

Abstract

Dengue fever (DHF) is an infectious disease caused by the dengue virus and transmitted through the bite of the Aedes aegypti mosquito. This disease is a major health problem in many tropical countries, including Indonesia. Identification and classification of DHF patients is very important to prevent further spread and to provide appropriate medical treatment. In this study, the classification of DHF disease is carried out using the K-Means algorithm, which is one of the methods in machine learning used to classify data based on similarity of features. This study aims to apply the K-Means algorithm in classifying DHF cases based on data on symptoms that appear in patients, such as high fever, joint pain, skin rashes, and others. The data used includes patient medical records that record various clinical and demographic parameters. The K-Means algorithm is used to group the data into clusters that describe the severity category or potential risk of dengue disease. The results showed that the K-Means algorithm can be used to cluster DHF patients well, with the division of groups that can describe the severity of the disease. Evaluation was conducted using metrics such as silhouette and cluster validity to assess the effectiveness of the algorithm in performing classification. This model is expected to help medical personnel in decision-making, provide early warning, and improve rapid response to dengue cases.

References

Annurullah, F. A., & Maulana, A. (2018). Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor. Jurnal Ilmu Komputer, Vol. 05,pp.28.

Ardianto, A., & Fitrianah, D. (2019). Penerapan Algoritma FP-Growth Rekomendasi Trend Penjualan ATK Pada CV. Fajar Sukses Abadi. Jurnal Telekomunikasi dan Kompute, 50.

Buulolo, E. (2020). Data Mining Untuk Perguruan Tinggi. Yogyakarta: CV Budi Utama.

Komariyah, S. (2023). Implementasi Data Mining FP-Growth Untuk Analisis Pola Pembelian Pada Transaksi Penjualan. Jurnal Manajemen Dan Bisnis Ekonomi, Vol.1,No.2,pp.66-67.

Mahmudah, R. R. (2014). Penggunaan Algoritma Fp-Growth Untuk Menemukan Aturan Asosiasi Pada Data Transaksi Penjualan Obat Di Apotek (Studi Kasus : Apotek Uad). Jurnal Sarjana Teknik Informatika, 130-134.

Mukhid, A. (2021). Metodologi Penelitian Pendekatan Kuantitatif. Surabaya: CV Jagad Media Publishing.

Munanda, E., & Monalisa, S. (2021). Penerapan Algoritma Fp-Growth Pada Data Transaksi Penjualan Untuk Penentuan Tata Letak Barang. Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informas, Vol. 7, no.2 ,pp.180-181.

Noverman Ndruru, d. (2022). Penerapan Metode Fp-Growth Untuk Penjualan Produk Seni Ukir Pada Buulolo Galery. Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD, 46.

Rukajat, A. (2018). Pendekatan Penelitian Kuantitatif. Yogyakarta: CV Budi Utama.

Sikumbang, E. D. (2018). Penerapan Data Mining Penjualan Sepatu Menggunakan Metode Algoritma Apriori. Jurnal Teknik Komputer, 156.

Situmorang, S. H., & Lufti, M. (2014). Analisis Data Untuk Riset Manajemen Dan Bisnis. Medan: USU Press.

Vulandari, R. T. (2017). Data Mining Teori Dan Aplikasi Rapidminer. Yogyakarta: Gava Media.

Wibowo, A. R., & Jananto, A. (2020). Implementasi Data Mining Metode Asosiasi Algoritma Fp-Growth Pada Perusahaan Ritel. Jurnal Teknologi Informasi dan Komunikasi, Vol,10.No,2.pp.203-204.

Downloads

Published

2024-11-25

How to Cite

Fredi Gaji, Cecilia D.P.B Gabriel, & Karolus Wulla Rato. (2024). Klasifikasi Penyakit Demam Berdarah Dengue dengan Menggunakan Algortima K-Mens. Jurnal Sistem Informasi Dan Ilmu Komputer, 2(4), 112–122. https://doi.org/10.59581/jusiik-widyakarya.v2i4.4251

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.