Implementasi Algoritma K-Nearest Neighbor Untuk Klasifikasi Penerimaan Beasiswa Program Indonesia Pintar
DOI:
https://doi.org/10.59581/jusiik-widyakarya.v1i4.1862Keywords:
Implementation, Classification, K-Nearest Neighbor, Scholarship Recipients Smart Indonesia Pintar (PIP)Abstract
Scholarships are a form of assistance in the form of educational expenses provided by the government or foundations to students or students who are categorized as from underprivileged families. However, in datermining scholarship recipients, there are still many scholarship recipients who come from wealthy families, while those from less fortunate families do not receive this assistance. This may be due to calculations and data processing that still use manual methods, causing scholarship recipients to not be on target. The purpose of this research is to simplify and minimize calculation errors in determining scholarship recipients for the Smart Indonesia Program (PIP) at SMK Karya Medika. Therefore, for calculating and processing PIP scholarship recipients data, data mining techniques can use the calssification method using the K-NN algprithm. K-Nearest Neighbor is a data classification method that will be used for data objects based on learning data that is closer to the object. In this study using the Confusion Matrix test so as to obtain an accuracy value of 80.00%.
References
Andini, A. D., Arifin, T., Sanjaya, A. R., Sanjaya, A. R., Coefficient, S., & Pasien, P. (2020). Implementasi Algoritma K-Medoids Untuk Klasterisasi Data Penyakit Pasien. 2(2), 128–138.
Arifin, T., & Ariesta, D. (2019). Prediksi Penyakit Ginjal Kronis Menggunakan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization. Jurnal Tekno Insentif, 13(1), 26–30. Https://Doi.Org/10.36787/Jti.V13i1.97
Arifin, T., & Herliana, A. (2020). Optimizing Decision Tree Using Particle Swarm Optimization To Identify Eye Diseases Based On Texture Analysis. Jurnal Teknologi Dan Sistem Komputer, 8(1), 59–63. Https://Doi.Org/10.14710/Jtsiskom.8.1.2020.59-63
Homepage, J., Cholil, S. R., Handayani, T., Prathivi, R., & Ardianita, T. (2021). Ijcit (Indonesian Journal On Computer And Information Technology) Implementasi Algoritma Klasifikasi K-Nearest Neighbor (Knn) Untuk Klasifikasi Seleksi Penerima Beasiswa. Ijcit (Indonesian Journal On Computer And Information Technology), 6(2), 118–127.
Iriane, R., & Nurfaizah, N. (2023). Klik: Kajian Ilmiah Informatika Dan Komputer Penerapan Data Mining Untuk Prediksi Penjualan Produk Pangan Hewan Menggunakan Metode K-Nearest Neighbor. Media Online, 3(5), 509–515. Https://Djournals.Com/Klik
Karepesina, F., & Zahrotun, L. (2023). Penerapan Data Mining Untuk Penentuan Penerima Beasiswa Dengan Metode K-Nearest Neighbor (K-Nn). Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto), 24(1), 1. Https://Doi.Org/10.30595/Techno.V24i1.9084
Koda, A., Rahayu, P., Pratama, A., Rafly, A., & Kaslani. (2020). Penentuan Bonus Karyawan Dengan Menggunakan Algoritma K-Nearest Neighbor. Kopertip : Jurnal Ilmiah Manajemen Informatika Dan Komputer, 4(1), 14–20. Https://Doi.Org/10.32485/Kopertip.V4i1.115
Mulyani, N. K. (2020). Penerapan Algoritma K-Nearest Naighbor Dalam Menentukan Penerima Beasiswa Peningkatan Prestasi Akademik Di Unisnu Jepara. Https://Doi.Org/Https://Eprints.Unisnu.Ac.Id/Id/Eprint/658/
Nata, A., & Suparmadi, S. (2022). Analisis Sistem Pendukung Keputusan Dengan Model Klasifikasi Berbasis Machine Learning Dalam Penentuan Penerima Program Indonesia Pintar. Journal Of Science And Social Research, 5(3), 697. Https://Doi.Org/10.54314/Jssr.V5i3.1041
Noviana, D., Susanti, Y., & Susanto, I. (2019). Analisis Rekomendasi Penerima Beasiswa Menggunakan Algoritma K-Nearest Neighbor (K-Nn) Dan Algoritma C4.5. Seminar Nasional Penelitian Pendidikan Matematika (Snp2m) 2019 Umt, 79–87.
Pauji, A., Aisyah, S., Surip, A., Saputra, R., & Ali, I. (2020). Implementasi Algoritma K-Nearest Neighbor Dalam Menentukan Penerima Bantuan Langsung Tunai. Kopertip : Jurnal Ilmiah Manajemen Informatika Dan Komputer, 4(1), 21–27. Https://Doi.Org/10.32485/Kopertip.V4i1.114
Putry, N. M., & Sari, B. N. (2022). Komparasi Algoritma Knn Dan Naïve Bayes Untuk Klasifikasi Diagnosis Penyakit Diabetes Mellitus. Evolusi : Jurnal Sains Dan Manajemen, 10(1). Https://Doi.Org/10.31294/Evolusi.V10i1.12514
Resmiati, R., & Arifin, T. (2021). Klasifikasi Pasien Kanker Payudara Menggunakan Metode Support Vector Machine Dengan Backward Elimination. Sistemasi, 10(2), 381. Https://Doi.Org/10.32520/Stmsi.V10i2.1238
Soleha, R. A., Wijaya, H. O. L., & Daulay, N. K. (2023). Klasifikasi Kemampuan Ekonomi Calon Siswa Baru Dengan Metode K-Nearest Neighbor Pada Sma Negeri 1 Musi Rawas. Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 8(1), 62–69. Http://Tunasbangsa.Ac.Id/Ejurnal/Index.Php/Jurasik/Article/View/542
Zaman, B., Rifai, A., & Hanif, M. B. (2021). Komparasi Metode Klasifikasi Batik Menggunakan Neural Network Dan K-Nearest Neighbor Berbasis Ekstraksi Fitur Tekstur. Journal Of Information Systems And Informatics, 3(4), 582–595. Https://Doi.Org/10.51519/Journalisi.V3i4.213
Zulfallah, F. H. (2022). Implementasi Algoritma Knn Dalam Mengukur Ketepatan Kelulusan Mahasiswa Uin Syarif Hidayatullah Jakarta.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Chusi Yanasari, Toni Arifin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.