Klasifikasi Penyakit Jantung Menggunakan Algoritma ANN dengan Persentase diatas 70%
DOI:
https://doi.org/10.59581/jkts-widyakarya.v2i3.3922Keywords:
Artificial Neural Network, Heart Disease Classification, Performance AnalysisAbstract
Heart disease is one of the biggest causes of death in the world. This research examines the use of the Artificial Neural Network (ANN) algorithm to classify heart disease based on 303 medical data of heart disease patients obtained from the Kaggle dataset center. The data used includes medical parameters such as age, gender, blood pressure, cholesterol levels and other examination results. Various ANN architectures were tested to find the optimal configuration in terms of the number of hidden layers and neurons in each layer. Model performance is evaluated using metrics such as accuracy, precision, recall, and F1-score. From the results of the performance measurement research, an accuracy rate of 97.06%, precision of 92.30%, recall of 92.30%, and F1-Score of 92.30% were obtained.
References
. Do, M.S., Park, Y.J., and Lelel, J.Y., ”The Effect of Spreading Gain Control on a CDMA slotted ALOHA System”, IlElElEl Trans, Computelr Commun, Vol, 26, pp 996-1006, July 2005.
. Ildrils, N.R.N., Toh, C.L., and Ellbuluk, El., “A New Torque and Flux Controller for DTC of Induction Machine”, IlElElEl Transactilons on Ilndustry Applilcatilon, Vol. 42, No.6, pp. 1358-1366, Nov/Delc 2006.
. M. Hosoz and H. M. Elrtunc, “Artificial Neural Network Analysis of an Automobile Air Conditioning System” Elnelrgy Conv. Man., Vol. 47, pp. 1574-1587, July 2006.
. Ahmad, T., & Alghamdil, A. S. (2019). "Memprediksi Penyakit Jantung Menggunakan Jaringan Syaraf Tiruan." Jurnal Unilvelrsiltas Ilndonelsila - Illmu Komputelr dan Ilnformasil, 31(4), 450-458.
. Andelrson, R., & Vasillakos, A. V. (2020). "Tinjauan Jaringan Syaraf Tiruan dalam Aplikasi Medis: Peluang dan Tantangan." Jurnal Ilnformatilka Meldils, 141, 104232.
. D. Cahyantil, A. Rahmayanil, and S. Ailny, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Ilndonels. J. Data Scil., vol. 1, no. 2, pp. 39–43, 2020.
. A. Maulilda, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Ilndonels. J. Data Scil., vol. 1, no. 2, pp. 29–33, 2020.
. Hasran, “Klasifikasi Penyakit Jantung Menggunakan Metode K-Nearest Neighbor,” Ilndonels. J. Data Scil., vol. 1, no. 1, pp. 1–4, 2020.
. Chaurasila, V., & Pal, S. (2014). "Pendekatan Data Mining untuk Mendeteksi Penyakit Jantung." Jurnal Illmu Komputelr dan Telknologil Ilnformasil, 2, 56-66.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Kendali Teknik dan Sains
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.