Pengembangan Aplikasi Mobile Android untuk Deteksi Otomatis Mata Katarak Menggunakan CNN dan Tensorflow
DOI:
https://doi.org/10.59581/jkts-widyakarya.v2i3.3722Keywords:
Mata Katarak, Convolutional Neural Network, Deep Learning, Tensorflow, AndroidAbstract
The development of an Android mobile application for automatic cataract detection using Convolutional Neural Network (CNN) and TensorFlow has been conducted. The aim of this research is to provide an easily accessible solution for the public to detect cataracts early, thereby reducing the negative impact of this eye condition. The CNN method is utilized to recognize cataract patterns through image data, with TensorFlow serving as the primary development platform. Preprocessing steps and data processing are implemented to enhance the detection accuracy and address variations in eye images. Evaluation indicates that the application is capable of detecting cataracts with satisfactory accuracy, making it a potential tool for cataract prevention and early management. In conclusion, this application enables rapid and efficient cataract detection, improving the accessibility of eye care and contributing to enhancing overall quality of life for communities by providing early intervention and treatment options.
References
Y. Permana, G. Pasek, S. Wijaya, and F. Bimantoro, “Sistem Pakar Diagnosa Penyakit Mata Menggunakan Metode Certainty Factor Berbasis Android (Android Based Expert System for Eye Diseases Diagnosis using Certainty Factor).” [Online]. Available: http://jcosine.if.unram.ac.id/
R. Dwi Auliannisa and F. S. Yosef Suratman, “Deteksi Katarak Menggunakan Metode Transformasi Hough Berbasis Android Cataract Detection Using Hough Transform Method Based on Android”.
N. A. Gifran, I. R. Magdalena, R. Yunendah, and N. Fuadah, “Klasifikasi Katarak Menggunakan Metode Discrete Wavelet Transform Dan Support Vector Machine Classification Of Cataract Using Discrete Wavelet Transform And Support Vector Machine.” [Online]. Available: http://pengolahancitradansuara.blogspot.com/2015/09/representasi-citra-digital.html
N. A. Fardana, D. S. Rusdianto, and L. Fanani, “Pembangunan Aplikasi Pendaftaran Operasi Penderita Katarak (Studi Kasus: Rumah Sakit Larasati Pamekasan),” 2018. [Online]. Available: http://j-ptiik.ub.ac.id
Rima Dias Ramadhani, A. Nur Aziz Thohari, C. Kartiko, A. Junaidi, T. Ginanjar Laksana, and N. Alim Setya Nugraha, “Optimasi Akurasi Metode Convolutional Neural Network untuk Identifikasi Jenis Sampah,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 312–318, Apr. 2021, doi: 10.29207/resti.v5i2.2754.
M. Harahap, Em Manuel Laia, Lilis Suryani Sitanggang, Melda Sinaga, Daniel Franci Sihombing, and Amir Mahmud Husein, “Deteksi Penyakit Covid-19 Pada Citra X-Ray Dengan Pendekatan Convolutional Neural Network (CNN),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 70–77, Feb. 2022, doi: 10.29207/resti.v6i1.3373.
M. Sholawati, K. Auliasari, and F. X. Ariwibisono, “Pengembangan Aplikasi Pengenalan Bahasa Isyarat Abjad Sibi Menggunakan Metode Convolutional Neural Network (CNN),” 2022.
A. Performansi, S. Deteksi, K. Riski, and W. Hutabri, “Perancangan Sistem Deteksi Katarak Menggunakan Metode Principal Component Analysis (PCA) Dan Knearest Neighbor (K-NN) Analisis Performansi Sistem Deteksi Katarak,” 2018.
F. Ramadhani, A. Satria, and S. Salamah, “Implementasi Algoritma Convolutional Neural Network dalam Mengidentifikasi Dini Penyakit pada Mata Katarak,” sudo Jurnal Teknik Informatika, vol. 2, no. 4, pp. 167–175, Dec. 2023, doi: 10.56211/sudo.v2i4.408.
Renjie Liu, “Higher accuracy on vision models with EfficientNet-Lite,” TensorFlow Lite. Accessed: Mar. 22, 2024. [Online]. Available: https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Kendali Teknik dan Sains
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.