Peramalan Prakiraan Cuaca Setiap Hari di Kota Medan dengan Pendekataan Rantai Markov

Authors

  • Septia Cahaya Sari Sipayung Universitas Negeri Medan
  • Thanaya Lovry Lastiar Universitas Negeri Medan
  • Trinita Melyana Hutagalung Universitas Negeri Medan
  • Sisti Nadia Amalia Universitas Negeri Medan

DOI:

https://doi.org/10.59581/konstanta.v2i2.3516

Keywords:

Markov Chain, Daily Weather, Prediction, Probability, Medan City

Abstract

This research utilizes the Markov Chain method to analyze daily weather data in the city of Medan. The main objective of this study is to forecast weather changes in the future based on the weather conditions of the previous day. Daily weather data was collected from the nearest weather station over a specific period of time. The analysis results indicate that the Markov Chain model provides good estimates of the likelihood of weather changes from one day to the next. The steady state probabilities demonstrate the dominance of partly cloudy and clear weather in the long term. This research provides valuable insights for various sectors related to weather, such as agriculture, transportation, and tourism.

References

Asnida, B. (2015). Model vektor autoregressive untuk peramalan curah hujan di Kota Makassar (Unpublished undergraduate thesis). Universitas Negeri Makassar.

Bambang, D. P., Budi, et al. (1999). Teknik jaringan syaraf tiruan feedforward untuk prediksi harga saham pada pasar modal Indonesia. Jurnal Informatika, 1(1), 33–37. Program Pascasarjana Peran Teknik Kendali, Institut Teknologi Bandung.

Dewi, R. (2009). Memprediksi curah hujan (data spatio-temporal) dengan metode bayesian networks. Jurusan Matematika, FMIPA UNS.

Dwijanto. (2012). Retrieved from http://masdwijanto.files.wordpress.com.bab-7.pdf.

Ihsan, H., Sanusi, W., & Hasriani, H. (2019). Peramalan pola curah hujan di Kota Makassar menggunakan model rantai Markov. Journal of Mathematics, Computations, and Statistics, 2(1), 19–30.

Isaacson, D. L., & Madson, R. W. (1976). Markov chains: Theory and applications. New York: John Wiley and Sons.

Kadafi, I., Nugroho, S., & Novianti, P. (2016). Aplikasi rantai Markov untuk menentukan peluang transisi curah hujan. Jurnal MIPA Universitas Bengkulu, 1–4.

Kemendikbud. (2014). Matematika SMA/MA SMK/MAK Kelas X Semester 2.

Megalina, Y. (2014). Prediksi cuaca ekstrim dengan model jaringan syaraf tiruan menggunakan program Matlab. EINSTEIN EJ, 2.

Nurhamiddin, F., & Sulisa, F. M. (2020). Peramalan cuaca menggunakan metode rantai Markov. Jurnal Biosainstek, 2(01), 16–22.

Nurjana, S., Paendong, M., & Langi, Y. (2016). Penerapan rantai Markov dalam pemilihan minat masuk siswa SMA ke universitas di Indonesia. D’CARTESIAN, 5(1), 50. https://doi.org/10.35799/dc.5.1.2016.12733

Ortiz-García, J. J., Costello, S. B., & Snaith, M. S. (2006). Derivation of transition probability matrices for pavement deterioration modeling. Journal of Transportation Engineering, 132(2), 141–161. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(141)

Paida. (2011). Deteksi perubahan pola curah hujan Kota Makassar (Unpublished undergraduate thesis). Universitas Hasanuddin Makassar.

Panthi, K. (2009). A methodological framework for modeling pavement maintenance costs for projects with performance-based contracts (Doctoral dissertation). Florida International University. https://doi.org/10.25148/etd.FI09120824

Pratama, T. I. B. (1999). Metode peramalan memakai jaringan saraf buatan dengan cara backpropagation. Jurnal Teknologi Industri, 3(2), 109–116.

Resmana, D. W. (1997). Prediksi nilai tukar valuta asing: Sebuah studi kasus penggunaan jaringan syaraf tiruan untuk peramalan. Surabaya: Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Kristen Petra.

Rofiroh, F. D. N. F., & Salim. (2020). Aplikasi rantai Markov pada prediksi hari bersalju di beberapa kota Amerika Serikat. STATMAT (Jurnal Statistika dan Matematika), 2(2), 131–141.

Sasake, S., Lesnussa, Y. A., & Wattimena, A. Z. (2021). Peramalan cuaca menggunakan metode rantai Markov (Studi Kasus: Cuaca harian di Kota Ambon). Jurnal Matematika, 11(1), 1. https://doi.org/10.24843/jmat.2021.v11.i01.p131

Side, S., Irma, S., & Sukarna. (2014). Aplikasi analisis rantai Markov untuk memprediksi status pasien rumah sakit umum daerah Kabupaten Barru. Online Journal of Natural Science.

Simeonov, I., Kilivarev, H., & Ilarionov, R. (2007). Algorithmic realization of system for short-term weather forecasting. Proceedings of The 2007 International Conference on Computer Systems and Technologies, CompSysTech ’07, 1.

Subagyo, A. M., Jayadi, O., & Dewi, A. C. (2018). Analisis strategi bersaing perusahaan bus menggunakan teknik rantai Markov, game theory, dan short route models. JIEMS (Journal of Industrial Engineering and Management Systems). https://doi.org/10.30813/jiems.v11i2.1180

Winda Fransiska, et al. (2022). Penerapan rantai Markov dalam peramalan cuaca (Studi Kasus: Cuaca harian di Kota Padang). Buana Matematika: Jurnal Ilmiah Matematika dan Pendidikan Matematika, 12(2), 117–126. https://doi.org/10.36456/buanamatematika.v12i2.6374

Wusko, A. M., & Nizar, M. (2017). Pendekatan rantai Markov dalam penelitian universitas di Pasuruan. Jurnal Knowledge Industrial Engineering, 4(1), 63–70.

Published

2024-06-13

How to Cite

Septia Cahaya Sari Sipayung, Thanaya Lovry Lastiar, Trinita Melyana Hutagalung, & Sisti Nadia Amalia. (2024). Peramalan Prakiraan Cuaca Setiap Hari di Kota Medan dengan Pendekataan Rantai Markov. Konstanta : Jurnal Matematika Dan Ilmu Pengetahuan Alam, 2(2), 247–261. https://doi.org/10.59581/konstanta.v2i2.3516

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.