Analisis Kinerja Algoritma Machine Learning Dalam Deteksi Anomali Jaringan

Authors

  • Sintia Situmorang Universitas Islam Negeri Sumatera Utara
  • Yahfizham Yahfizham Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.59581/konstanta.v1i4.1722

Keywords:

algorithm, anomaly, machine learning

Abstract

Abstract.Network anomaly detection is a situation that occurs in network traffic that causes conditions to become abnormal. This research aims to analyze the performance of various machine learning algorithms in network anomaly detection and compare the performance of single classifier algorithms with ensemble learning. This ensemble learning technique has advantages such as increased accuracy and performance, can reduce the risk of overfitting and underfitting by using different subsets and features of data, and can turn weak learning into strong learning. However, on the other hand, this ensemble learning technique also has disadvantages in its use, namely that this ensemble method may not work well with high variance models, as the ensemble method may not be optimized for anomaly detection and that this method can be computationally expensive and time consuming due to the need to train and store multiple models. Some of the techniques used are deep learning, eager learning, lazy learning, bagging, feature selection, boosting, and stacking. In addition to this, this machine learning algorithm has weaknesses, including if any of the data used is incomplete, it will result in inaccurate completion data, making the programming process quite time-consuming. This research can help develop a more effective and efficient network anomaly detection system. The results of this research show that using ensemble learning and feature selection techniques can improve anomaly detection performance by reducing the processing time of redundant data and classification, as well as increasing precision values.

 

 

References

Anggraini, C. (2023). teknk machine learning untuk deteksi anomali dalam jaringan loT. jurnal pendidikan , 1-3.

B. A. Tama, dkk. (2017) evaluasi empiris ekstenti ensemble untuk deteksi sains. Jurnal pendidikan, 149-158.

dinata, R. k. (2020). machine learning . lhokseumawe: unimal press.

imam, r. m. (2019 ). deteksi anomaly jaringan menggunakan hybrid algorthm. jurnal prosiding teknik, 2-3.

iriani, s. a. (2023). analisis bibliometrik VOSviewer :study artificial intelegence dalam pendidikan . jurnal simki pedagogia, 5-7.

kusuma, p. d. (2020). algoritma dan pemprograman. Yogyakarta: CV BUDI UTANA.

Munawar, Z. (2020). keamanan loT dengan deep learning dan teknologi big data. jurnal informasi dan komunikasi , 162-164.

perkasa, v. b. (2022). studi bibliometrik dengan VOSviewer terhadap publikasi ilmiah mengenai situs astana gede kawali . jurnal ilmiah multidisiplin , 2-4.

roihan, a. (2020). pemanfaatan machine learning dalam berbagai bidang :review paper. indonesia journal on computer and information technology, 77-79.

saheed, Y. k. (2022). A Machine learning-based intrusion detection for detection internet of things network attacks. alexandria engineering journal , 4-6.

suartana, I. M. (2022). analisis penerapan deep learning untuk klasifikasi serangan terhadap keamanan jaringan. jurnal ilmu komputer , 101-103.

sudiyarno, R. (2020). peningkatan performa pendekatan animaly menggunakan ensembel learning dan feature learing. citec journal , 2-3.

sugiyono, dkk. (2017). metode penelitian kuantitatif, kualitatif, dan R dan D. Bandung : PT Alfabet.

sulastri, h. (2021). implementasi algoritma machine learning untuk penentuan cluster status gizi balita. jurnal pekayasa teknologi informasi , 1-2.

Tan, T. (2023). study perbandingan deteksi intrusi jaringan menggunakan machine learning . jurnal teknilogi dan informasi , 152-155.

Downloads

Published

2023-11-10

How to Cite

Sintia Situmorang, & Yahfizham Yahfizham. (2023). Analisis Kinerja Algoritma Machine Learning Dalam Deteksi Anomali Jaringan. Konstanta : Jurnal Matematika Dan Ilmu Pengetahuan Alam, 1(4), 258–269. https://doi.org/10.59581/konstanta.v1i4.1722

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 7 8 9 10 11 12 

You may also start an advanced similarity search for this article.