Implementasi Sistem Deteksi Kantuk Secara Real-Time Bagi Pengemudi Menggunakan Metode Eye Aspect Ratio
DOI:
https://doi.org/10.59581/jusiik-widyakarya.v2i4.4226Keywords:
Driver Drowsiness, Eye Aspect Ratio, Drowsiness Detection, Real-Time, Computer VisionAbstract
Traffic accidents are one of the leading causes of death worldwide, where drowsiness while driving is a significant factor that reduces driver alertness. This study develops a real-time driver drowsiness detection system using the Eye Aspect Ratio (EAR) method to avoid this. EAR calculates the ratio of the upper and lower eyelid distances to detect signs of drowsiness based on changes in eye shape. This system utilizes the OpenCV and Dlib libraries to identify faces and measure EAR, with a threshold of 0.25 as a warning trigger. If the EAR value drops below the threshold in several consecutive frames, the system automatically activates an alarm to increase driver alertness. With the advantages of cost efficiency and ease of implementation without additional hardware, this system is suitable for various types of vehicles. The results show that this system is effective in providing early warnings, thus helping to reduce the risk of accidents due to drowsiness.
References
Albanna, I. (2018). Implementasi Pandas Data frame sebagai Agregasi dan Tabulasi Penyajian Data Luaran Survei Kepuasan Pengguna Proses Pembelajaran dalam Pendidikan Tinggi. Proceedings of AGILE.
Amalia, D., & Utaminingrum, F. (2021). Deteksi Kantuk pada Pengemudi melalui Jumlah Kedipan Mata Menggunakan Facial Landmark berbasis Intel NUC. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(12), 5529–5535.
Amelina, M., & Muhammad, R. A. N. (2024). Pengenalan Wajah Mahasiswa Untuk Absensi Perkuliahan Menggunakan Machine Learning. Journal Technology of Computer, 1(1), 1–10. https:// http://ojs.adzkia.ac.id/index.php/jtech
Chen, X. (2023). Introduction and Analysis of Python Software. Frontiers in Computing and Intelligent Systems, 5(2), 41–43. https://doi.org/10.54097/fcis.v5i2.12348
Firdaus, A., Utaminingrum, F., & Widasari, E. R. (2023). Sistem Pendeteksi Kantuk Pengemudi berbasis Eye Aspect Ratio dan Mouth Opening Ratio menggunakan Algoritme C-LSTM. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 7(2), 927–933. http://j-ptiik.ub.ac.id
Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
Huda, C. (2020). DETEKSI KANTUK MEMANFAATKAN FACIAL LANDMARK BERDASARKAN ANALISIS NILAI EAR DAN BOBOT KECERAHAN PADA PENGENDARA MOBIL BERBASIS PERANGKAT BERGERAK. Magister Thesis, Universitas Brawijaya. http://repository.ub.ac.id/id/eprint/178376/
Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
Ilham, M. F. N., & Saputra, A. (2023). Seleksi Penerimaan Mahasiswa Baru Dengan Metode Pemecahan Masalah Algoritma Greedy Menggunakan Python. Jurnal Rekayasa Teknologi Informasi (JURTI), 7(1), 32. https://doi.org/10.30872/jurti.v7i1.9566
Ilmadina, H. Z., Apriliani, D., & Wibowo, D. S. (2022). Deteksi Pengendara Mengantuk dengan Kombinasi Haar Cascade Classifier dan Support Vector Machine. Jurnal Informatika: Jurnal Pengembangan IT, 7(1), 1–7. https://doi.org/10.30591/jpit.v7i1.3346
Kurniawan Umbu Nggiku, C., Rabi, A., & Subairi, S. (2023). Deteksi Kantuk Untuk Keamanan Berkendara Berbasis Pengolahan Citra. Jurnal JEETech, 4(1), 48–56. https://doi.org/10.32492/jeetech.v4i1.4107
Ramadhani, N., Aulia, S., Suhartono, E., & Hadiyoso, S. (2021). Deteksi Kantuk pada Pengemudi Berdasarkan Penginderaan Wajah Menggunakan PCA dan SVM. Jurnal Rekayasa Elektrika, 17(2), 1–10. https://doi.org/10.17529/jre.v17i2.19884
Rayhan, A., & Kinzler, R. (2023). Advancing Scientific Computing with Python’s SciPy Library. https://doi.org/10.13140/RG.2.2.21131.87841
S. Mäs, D. Henzen, L. Bernard, M. Müller, S. Jirka, dan I. Senner. (2018). "Generic Schema Descriptions for Comma-Separated Values Files of Environmental Data". Proceedings of AGILE 2018 – Lund, June 12-15.
Saragih, Y. W., Lumbantoruan, S. K., Armando, E., & Junita, J. (2023). Penerapan library pygame dalam game RPG“the adventure.” Jurnal Manajemen Informatika Jayakarta, 3(1), 57–73. https://doi.org/10.52362/jmijayakarta.v3i1.1013
Sasono, A. (2023). SISTEM PENDETEKSI KANTUK PADA PENGENDARA MOBIL BERBASIS IMAGE PROCESSING. Universitas Muhamadiyah Surakarta.
Shammi, S. K., Sultana, S., Islam, Md. S., & Chakrabarty, A. (2018). Low Latency Image Processing of Transportation System Using Parallel Processing co-incident Multithreading (PPcM). 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), 363–368. Kitakyushu, Japan: IEEE. https://doi.org/10.1109/ICIEV.2018.8640957
Sharma, S., Shanmugasundaram, K., & Ramasamy, S. K. (2016). FAREC — CNN based efficient face recognition technique using Dlib. 2016 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), 192–195. Ramanathapuram, India: IEEE. https://doi.org/10.1109/ICACCCT.2016.7831628
Sugawara, E., & Nikaido, H. (2014). Properties of AdeABC and AdeIJK Efflux Systems of Acinetobacter baumannii Compared with Those of the AcrAB-TolC System of Escherichia coli. Antimicrobial Agents and Chemotherapy, 58(12), 7250–7257. https://doi.org/10.1128/AAC.03728-14
Suradi, A. A. M., Alam, S., & Rasyid, M. F. (2023). Sistem Deteksi Kantuk Pengemudi Mobil Berdasarkan Analisis Rasio Mata Menggunakan Computer Vision. Jurnal Komputer dan Informatika, 5(2), 222–223. https://doi.org/10.53842/juki.v5i2.269.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Vázquez-Baeza, Y. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
Zulkhaidi, T. C. A.-S., Maria, E., & Yulianto, Y. (2020). Pengenalan Pola Bentuk Wajah dengan OpenCV. Jurnal Rekayasa Teknologi Informasi (JURTI), 3(2), 181. https://doi.org/10.30872/jurti.v3i2.4033
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Sistem Informasi dan Ilmu Komputer
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.