Prediksi Hasil Produksi Kopi Provinsi di Pulau Kalimantan Menggunakan Analisis Rantai Markov

Authors

  • Reynaldy Hutabarat Universitas Negeri Medan
  • Satria Rizky Silaban Universitas Negeri Medan
  • Septi Melani Putri Tambunan Universitas Negeri Medan

DOI:

https://doi.org/10.59581/konstanta.v2i2.3629

Keywords:

Prediction, Coffee Production, Markov Chain

Abstract

This research discusses the prediction of coffee production outcomes in Kalimantan using Markov chain analysis. A Markov chain is an analytical technique that can be used to predict future changes based on past changes. The aim of this study is to determine the predicted coffee production results in Kalimantan from 2023 to 2025 based on Markov chain analysis. Based on the results of the Markov chain analysis of coffee production data in Kalimantan from 2018 to 2022, it is concluded that the predicted coffee production results in 2024 are as follows: West Kalimantan Province is expected to produce 3.5632 thousand tons, Central Kalimantan Province 0.3275 thousand tons, South Kalimantan Province 1.3727 thousand tons, East Kalimantan Province 0.1934 thousand tons, and North Kalimantan Province 0.1539 thousand tons. Furthermore, in 2025, the coffee production in West Kalimantan Province is predicted to reach 3.5935 thousand tons, Central Kalimantan Province 0.3304 thousand tons, South Kalimantan Province 1.3857 thousand tons, East Kalimantan Province 0.1952 thousand tons, and North Kalimantan Province 0.1554 thousand tons.

References

Aguirre, M. A., & Akritas, A. (2019). An introduction to linear algebra (2nd ed.). Springer. https://doi.org/10.1007/978-3-030-17002-9

Anton, H., & Rorres, C. (2005). Elementary linear algebra: Applications version (8th ed., Vol. 2). (I. Harmein & J. Gressando, Trans.). Erlangga. (Original work published 2000)

Baco, E., Sauddin, A., & Bakri, N. (2017). Analisis Persaingan Industri Televisi Berbayar Menggunakan Rantai Markov (studi kasus: pt. Indonusa Telemedia (Transvision) Versus Televisi Berbayar Lainnya Di Kota Makassar Tahun 2017). Jurnal MSA (Matematika dan Statistika serta Aplikasinya), 7(1), 18-27. https://doi.org/10.1016/j.ecra.2020.100327

Chen, H., & Yu, L. (2018). A Markov chain model for analyzing customer churn in e-commerce. Electronic Commerce Research and Applications, 29, 100327. https://doi.org/10.1016/j.ecra.2020.100327

Hanafiah, R., Mutmainah, A., & Andini, N. (2020). Potential of coffee agroecosystems in Kalimantan Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 475(1), 012017. https://doi.org/10.1088/1755-1315/475/1/012017

Khasanov, R. (2020). Conditional probability and its applications. Springer. https://doi.org/10.1007/978-3-030-37623-0

Kusumawati, Y. D., & Nugroho, B. (2021). Sistem persamaan linear dan aplikasi metode matriks (2nd ed.). Pustaka Pelajar.

Li, Y., & Ji, C. (2019). A Markov chain approach for assessing the stability of complex systems. Reliability Engineering & System Safety, 187, 106680. https://doi.org/10.1016/j.ress.2019.106680

Liu, K. (2020). Introduction to stochastic processes and applications. CRC Press. https://doi.org/10.1201/9780429274569

Mardia, K., Kent, J. T., & Bibby, J. R. (2019). Multivariate analysis (4th ed.). Pearson Education.

Markov, A. A. (1896). Sur une certaine application des αλγèbres linéaires au calcul des probabilités. Bulletin de la Société mathématique de France, 15, 38-45.

Marli, Z., Rusdiana, S., Rahayu, L., & Fradinata, E. (2018). Pengantar Biostatistika Dan Aplikasinya Pada Status Kesehatan Gizi Remaja. Syiah Kuala University Press.

Müller, J., O'Neill, C., & Sklar, J. (2019). Coffee production and climate change: A global spatial analysis. Environmental Research Letters, 14(10), 104012. https://doi.org/10.1088/1748-9326/ab3c6a

Noble, C. B., & Daniel, J. W. (2018). Applied linear algebra (4th ed.). Pearson Prentice Hall.

Papoulis, A. (2018). Probability, random variables, and stochastic processes (4th ed.). McGraw-Hill.

Penney, D. C. (2019). Modern calculus and analytic geometry (3rd ed.). Pearson Addison Wesley.

Siswanto. (2007). Operation research jilid II. Erlangga.

Smith, S. T. (2020). Linear algebra (5th ed.). CRC Press.

Sudaryono. (2012). Statistika probabilitas (Teori & Aplikasi). C.V ANDI OFFSET.

Utomo, R. S. (2014). Kelayakan Industri Kopi Di Provinsi Kalimantan Barat. Jurnal Bina Praja: Journal of Home Affairs Governance, 6(3), 205–212.

Wibowo, A. (2019). Potensi dan tantangan kopi di era milenial. Warta Pusat Penelitian Kopi Dan Kakao Indonesia, 21(2), 16–23.

Zhang, J., & Wang, H. (2020). A Markov decision process approach for multi-objective flow shop scheduling with uncertain processing times. Journal of Scheduling, 23(6), 755-773. https://doi.org/10.1007/s10951-019-00668-w

Published

2024-06-20

How to Cite

Reynaldy Hutabarat, Satria Rizky Silaban, & Septi Melani Putri Tambunan. (2024). Prediksi Hasil Produksi Kopi Provinsi di Pulau Kalimantan Menggunakan Analisis Rantai Markov. Konstanta : Jurnal Matematika Dan Ilmu Pengetahuan Alam, 2(2), 346–357. https://doi.org/10.59581/konstanta.v2i2.3629

Similar Articles

You may also start an advanced similarity search for this article.