Peramalan Bencana Alam di Kota Semarang dengan Menggunakan Markov Chains

Authors

  • Suci Ramadhani Universitas Negeri Medan
  • Surya Alenta Nababan Universitas Negeri Medan
  • Yasmin Azzahra Universitas Negeri Medan
  • Sisti Nadia Amalia Universitas Negeri Medan

DOI:

https://doi.org/10.59581/konstanta.v2i2.3519

Keywords:

Markov Chains, Forecasting, Natural Disasters

Abstract

Indonesia, as a country with complex geological conditions due to the convergence of various tectonic plates, is highly susceptible to natural disasters such as earthquakes, tsunamis, and volcanic eruptions. The city of Semarang, as the capital of Central Java Province, also frequently faces disasters such as floods, landslides, and earthquakes. Predicting the occurrence of natural disasters becomes crucial to mitigate the negative impacts they cause. This study uses the Markov chain method to predict natural disasters in the city of Semarang based on disaster data from 2018-2022. The prediction results indicate a 16% chance of floods, 34% chance of landslides, 10% chance of tornadoes, 22% chance of fires, and 17% chance of falling trees in 2023. Validation of the predictions against actual data for 2023 shows a relatively good match for floods and fires, but there are significant differences in the predictions for tornadoes and falling trees. These results indicate that the Markov chain method has potential in predicting disaster occurrences, but accuracy improvements are needed to account for weather variability and dynamic environmental factors. This research is expected to assist the government and society in enhancing disaster preparedness and mitigation in the future.

References

Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). (2022). Data iklim dan cuaca Kota Semarang. Jakarta: BMKG.

Badan Penanggulangan Bencana Daerah (BPBD) Kota Semarang. (2023). Laporan tahunan kejadian bencana Kota Semarang. Semarang: BPBD.

Chaidir, C., & Tuharea, N. D. (2022). Analisa perbandingan data pasang surut dengan metode koefisien korelasi dan RMSE antara data IOC sealevelmonitoring dan data program NAOTID. Riset Sains dan Teknologi Kelautan, 84–89.

Hidayati, N., Pungkasanti, P. T., & Wakhidah, N. (2021). Prediksi bencana alam di Kota Semarang menggunakan algoritma Markov Chains. Jurnal Sains Dan Informatika, 7(1), 107–116. https://jsi.politala.ac.id/

Nawangsari, S., Iklima, F. M., & Wbowo, E. P. (2021). Konsep Markov Chains untuk menyelesaikan prediksi bencana alam di wilayah Indonesia dengan studi kasus Kotamadya Jakarta Utara. Jurnal Skripsi Program Studi Teknik Informatika, Universitas Muhammadiyah Surakarta.

Peraturan Kepala Badan Nasional Penanggulangan Bencana Nomor 3 (2008).

Purwanto, A. (2020). Analisis rantai Markov dalam prediksi bencana alam. Yogyakarta: Gadjah Mada University Press.

Ramadhan, M. I., & Prihandoko, P. (2019). Penerapan data mining untuk analisis data bencana milik BNPB menggunakan algoritma K-means dan linear regression. Jurnal Ilmiah Informatika Komputasi, 22(1), 57–65.

Sudibyo, D. (2019). Mitigasi bencana di Indonesia: Teori dan praktik. Bandung: ITB Press.

Published

2024-06-13

How to Cite

Suci Ramadhani, Surya Alenta Nababan, Yasmin Azzahra, & Sisti Nadia Amalia. (2024). Peramalan Bencana Alam di Kota Semarang dengan Menggunakan Markov Chains. Konstanta : Jurnal Matematika Dan Ilmu Pengetahuan Alam, 2(2), 262–275. https://doi.org/10.59581/konstanta.v2i2.3519

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.