Analisa Komparasi Algoritma Naïve Bayes, Decision Tree Dan KKN Untuk Klasifikasi Kebakaran Hutan Pada Wilayah Aljazair

Authors

  • Muhammad Fadhiil Alamsyah ARS University
  • Tri Putra Satriawan ARS University
  • Femmy Novica Ramadanis ARS University
  • Rahma Anugrah Mulyawan ARS University
  • Candra Edmond ARS University
  • Ricky Firmansyah ARS University

DOI:

https://doi.org/10.59581/jusiik-widyakarya.v1i2.425

Keywords:

Algeria, Decision trees, KNN, Forest fires, Naïve bayes.

Abstract

The Mediterranean region, in particular Algeria, is experiencing serious challenges due to the increased opportunities for forest fires. Since the mid-1970s, there has been a 50% reduction in rainfall over northwestern Algeria, making northern Algeria particularly vulnerable to the problem for many years. More than 37,000 hectares of sensitive forest are lost every year due to this extreme drought. The findings of this study, which assessed the hazard of forest fires from 2006 to 2019, agree with those of Bentchakal,Chibane (2022), who examined the problems caused by forest fires in the region. The aim of this investigation is to gain a better understanding of the problems caused by local forest fires and to use that expertise to provide insight for the authors and readers of this report. The report was written by presenting the findings of observations made using the Rapid Miner classification approach, which includes the categorization of areas affected by forest fires. Data is collected using a variety of algorithmic techniques, including Naive Bayes, KNN, and decision trees, which are used as tests of data to identify the most accurate results. The findings show that the Decision Tree technique has the best accuracy of 86.49% and provides a thorough explanation of the data.

References

A. K. Mishra. (2020). Naive Bayes, Decision Tree and KNN classification algorithms for forest fire prediction using remote sensing data. International Journal of Geomatics and Geosciences.

Aggarwal, C. C. (2018). Data classification: algorithms and applications. Springer.

Alpaydin, E. (2018). Introduction to machine learning. Cambridge. Cambridge, MA: MIT Press.

Amara, H. , & B. N. (2018). A comparative study of decision tree, Naive Bayes and KNN algorithms for forest fire classification in Algeria. . Journal of Ambient .

Ananthi, J., Sengottaiyan, N., Anbukaruppusamy, S., Upreti, K., & Dubey, A. K. (2022). Forest fire prediction using IoT and deep learning. International Journal of Advanced Technology and Engineering Exploration, 9(87), 246–256.

Annissa Widya Davita. (2022, March 28). Pahami Metode Decision Tree Sebagai Algoritma Data Science. DQLab.

Arbi, M. B. , & O. A. (2021). Evaluation of Naive Bayes, Decision Tree, and KNN Algorithms for Forest Fire Prediction in Algeria. Journal of Applied Sciences, 21(2), 105-111.

Curt, T., Aini, A., & Dupire, S. (2020). Fire activity in Mediterranean forests (The Algerian case). Fire, 3(4), 58.

Djahri, A. , & B. N. (2019). Comparison of Naive Bayes, Decision Tree, and k-Nearest Neighbor Algorithms for Forest Fire Classification in Algeria. International Journal of Engineering & Technology.

Domingos, P. (2018). The master algorithm: How the quest for the ultimate learning machine will remake our world. Basic Books.

Fayyad, U. M. , P.-S. G. , & S. P. (2018). From data mining to knowledge discovery in databases. AI Magazine,.

Fitriyani, F. (2022). Implementasi Forward Selection dan Bagging untuk Prediksi Kebakaran Hutan Menggunakan Algoritma Naïve Bayes. Jurnal Nasional Teknologi Dan Sistem Informasi, 8(1), 1–8.

H. E. Khedr. (2019). orithms for Forest Fire Classification using Remote Sensing Data. International Journal of Remote Sensing and Earth Sciences.

Han, J. , & K. M. (2018). Data mining. Concepts and Techniques.

Handayani, F., & Pribadi, F. S. (2018). Implementasi algoritma naive bayes classifier dalam pengklasifikasian teks otomatis pengaduan dan pelaporan masyarakat melalui layanan call center 110. Jurnal Teknik Elektro, 7(1), 19–24.

Ivanedra, K., & Mustikasari, M. (2019). Implementasi Metode Recurrent Neural Network Pada Text Summarization Dengan Teknik Abstraktif. J. Teknol. Inf. Dan Ilmu Komput, 6(4), 377.

Kaur, K. , & C. K. (2021). (2021). A review of k-nearest neighbor algorithm for data classification. Kaur, K., & Chahal, K. (2021). A Review of k-Nearest NeighJournal of Ambient Intelligence and Humanized Computing, 12(5), 7647-7661.

Li, H. , & Y. X. (2020). (2019). An improved random forest algorithm for customer churn prediction. Information Sciences, 526, 198-212.

Li, X. , L. Q. , L. H. , & Z. Y. (2019). (2019). Naive Bayesian network-based method for diagnosing knee osteoarthritis. . . Journal of Medical Systems, 43(3), 113.

Lin, C.-H., Yang, P.-K., Lin, Y.-C., & Fu, P.-K. (2020). On machine learning models for heart disease diagnosis. 2020 IEEE 2nd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), 158–161.

Mardalius, M. (2018). Pemanfaatan Rapid Miner Studio 8.2 Untuk Pengelompokan Data Penjualan Aksesoris Menggunakan Algoritma K-Means. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 4(2), 123–132.

Mardikaningsih, R., Sinambela, E. A., Issalillah, F., Munir, M., & Retnowati, E. (2021). Analisis Korelasi Antara Role Stress dan Komitmen Organisasi. Jurnal Baruna Horizon, 4(2), 79–83.

Mitchell, T. M. (2016). Machine learning. McGraw-Hill Education.

Mohamed Lamine Zargayouna. (2018). A Comparative Study of Naive Bayes, Decision Tree, and KNN Algorithms for Forest Fire Detection. Mustapha Belghit.

Novianti, D. (2019). Implementasi Algoritma Naïve Bayes Pada Data Set Hepatitis Menggunakan Rapid Miner. Paradig.-J. Komput. Dan Inform, 21(1), 49–54.

S. A. Al-Hussaini. (2021). fire Hazard Assessment Using Naive Bayes, Decision Tree, and KNN Algorithms Based on Remote Sensing Data. Journal of Forest Research and Development.

Suresh Bista, R. S. B. G. (2018). “Classification Algorithms in Forest Fire Analysis: A Review.” -.

Sutoyo, M. N. (n.d.). Algoritma K-NN.

Utomo, D. P., & Mesran, M. (2020). Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung. Jurnal Media Informatika Budidarma, 4(2), 437–444.

Wang, Z. , & J. Y. (2019). (2019). Multi-layer decision tree algorithm based on rough set theory for medical diagnosis. Journal of Medical Systems, 43(8), 435.

Zhang, L. , & C. H. (2019). A Naive Bayes-based imbalanced data classification method using a weighted prior probability. Neurocomputing, 342, 10-19.

Zhang, L. , & C. H. (2019). Decision tree-based imbalanced data classification using a modified distance measure. . Neurocomputing, 342, 36-44.

Gill, P. S. (2018). Methods of data collection in qualitative research. Gill, P., Stewart, K., Treasure, E., & Chadwick, B. (2008). Methods of data collection inBritish Dental Journal.

McCusker, K. &. (2018). Research using qualitative. quantitative or mixed methods and choice based on the research.

Sofaer, S. (2018). Qualitative methods. Health Services .

Downloads

Published

2023-05-31

How to Cite

Muhammad Fadhiil Alamsyah, Tri Putra Satriawan, Femmy Novica Ramadanis, Rahma Anugrah Mulyawan, Candra Edmond, & Ricky Firmansyah. (2023). Analisa Komparasi Algoritma Naïve Bayes, Decision Tree Dan KKN Untuk Klasifikasi Kebakaran Hutan Pada Wilayah Aljazair. Jurnal Sistem Informasi Dan Ilmu Komputer, 1(2), 72–86. https://doi.org/10.59581/jusiik-widyakarya.v1i2.425