Pengenalan Gambar Dasar Menggunakan Python dan OpenCV
DOI:
https://doi.org/10.59581/jusiik-widyakarya.v2i4.4200Keywords:
OpenCV, Python, image processing, computer vision, image analysis, image manipulationAbstract
OpenCV is a widely used library in the field of image processing and computer vision. Combined with Python's flexibility, OpenCV provides an extensive range of functions for efficient image processing, modification, analysis, and visualization. This paper aims to introduce the fundamental concepts of image processing using Python and OpenCV, including image reading, color conversion, edge detection, and image manipulation such as resizing and cropping. Furthermore, this study discusses basic analysis techniques like color distribution histograms and feature detection. By presenting these concepts, the paper aspires to help readers understand the foundations of digital image processing and explore the potential applications of OpenCV in practical fields such as pattern recognition, object detection, and image segmentation.
References
Effendi, M. R. (2018). Sistem Deteksi Wajah Jenis Kucing Dengan Image Classification Menggunakan Opencv. Jurnal Teknologi Informatika Dan Komputer, 4(1), 27–35. https://doi.org/10.37012/jtik.v4i1.283
Hasan, R. T. H., & Sallow, A. B. (2021). Face Detection and Recognition Using OpenCV. Journal of Soft Computing and Data Mining, 2(2), 86–97. https://doi.org/10.30880/jscdm.2021.02.02.008
Howse, J. (2013). OpenCV Computer Vision with Python. In Cs_Python_in. www.it-ebooks.info
Komang, S. B. I. (2018). Aplikasi Untuk Pengoprasian Komputer Dengan Mendeteksi Gerakan Menggunakan Opencv Python. Prosiding SINTAK 2018, 190–191.
Kumar, P., Srivastava, J., Srivastava, N., Tiwari, H., & Saxena, V. (2024). Facial Recognition Attendance System Using Python. Indian Journal of Computer Science and Technology, 5(2), 65–72. https://doi.org/10.59256/indjcst.20240302008
Muchtar, H., & Apriadi, R. (2019). Implementasi Pengenalan Wajah Pada Sistem Penguncian Rumah Dengan Metode Template Matching Menggunakan Open Source Computer Vision Library (Opencv). RESISTOR (ElektRonika KEndali TelekomunikaSI Tenaga LiSTrik KOmputeR), 2(1), 39. https://doi.org/10.24853/resistor.2.1.39-42
Raguraman, P., Meghana, A., Navya, Y., Karishma, S., & Iswarya, S. (2021). Color Detection of RGB Images Using Python and OpenCv. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 3307, 109–112. https://doi.org/10.32628/cseit217119
Ratna, S. (2020). PENGOLAHAN CITRA DIGITAL DAN HISTOGRAM DENGAN PHYTON DAN TEXT EDITOR PHYCHARM. In Technologia (Vol. 11, Issue 3).
Sari, M., Rachman, H., Juli Astuti, N., Win Afgani, M., & Abdullah Siroj, R. (2022). Explanatory Survey dalam Metode Penelitian Deskriptif Kuantitatif. Jurnal Pendidikan Sains Dan Komputer, 3(01), 10–16. https://doi.org/10.47709/jpsk.v3i01.1953
Yuhandri, Y., Ramadhanu, A., & Syahputra, H. (2022). Pengenalan Teknologi Pengolahan Citra Digital (Digital Image Processing) Untuk Santri Di Rahmatan Lil’Alamin International Islamic Boarding School. Community Development Journal : Jurnal Pengabdian Masyarakat, 3(2), 1239–1244. https://doi.org/10.31004/cdj.v3i2.5868
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Sistem Informasi dan Ilmu Komputer
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.