Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Tas Branded Menggunakan Algoritma Apriori

Authors

  • Wulan Dari Universitas Potensi Utama, Medan
  • Dian Maya Sari Universitas Potensi Utama, Medan
  • Nurul Nazli Universitas Potensi Utama, Medan

DOI:

https://doi.org/10.59581/jusiik-widyakarya.v1i4.2834

Keywords:

Data Mining, Market Basket Analysis, Association Rules, Apriori Algorithms

Abstract

Data mining is a technique to extract new information from the data warehouse, information is considered very important and valuable because by mastering the information so easily to achieve a goal, this makes everyone competing to obtain information, as well as on trading businesses such as bag store BRANDED. store is located close to the home of the population, this certainly affects the level of sales, with the daily sales activities, sales transaction data will continue to grow, causing data storage is greater. Sales transaction data is only used as an archive without being put to good use. Basically the data set has very useful information. The analysis of market basket with Apriori Algorithm is one method of data mining which aims to find the pattern of association based on consumer spending pattern, so that it can be known what items are purchased simultaneously. The result of this research found that the highest support and confidence value is Ysl and Chanel with a support value of 50% and confidence of 75%.

References

Buulolo, E. (2017). ImplementasiI Algoritma Apriori Pada Sistem Persediaan Obat ( Studi Kasus : Apotik Rumah Sakit Estomihi ).

Fauzy, M., & Asror, I. (2016). Penerapan Metode Association Rule Menggunakan Algoritma Apriori Pada Simulasi Prediksi Hujan Wilayah Kota Bandung, II(2).

Gamarra, C., Guerrero, J. M., & Montero, E. (2016). A knowledge discovery in databases approach for industrial microgrid planning. Renewable and Sustainable Energy Reviews, 60, 615–630.

Gunadi, G., & Sensuse, D. I. (2012). Penerapan Metode Data

Jiawei Han And Micheline Kamber. (2006). “ Data Mining : Concepts and Techiques ”. San Fransisco : Morgan Kaufmann Publishers

Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( FP-GROWTH ), 4(1).

Putro, A. N. S., Ernawati, & Wisnubhadra, I. (2016). Market Basket Analysis Pada Magister Teknik Informatika , Universitas Atma Jaya Yogyakarta, 978–979

Santony, J. (2012). IMPLEMENTASI DATA MINING DENGAN METODE MARKET BASKET ANALYSIS

Santoso, H., Hariyadi, I. P., & Prayitno. (2016). Data Mining Analisa Pola Pembelian Produk. Teknik Informatika, (1), 19– 24.

Solnet, D., Boztug, Y., & Dolnicar, S. (2016). An untapped gold mine? Exploring the potential of market basket analysis to grow hotel revenue. International Journal of Hospitality Management, 56, 119–125.

Subarsono, D. (2014). Perbedaan Pelayanan Pada Ritel Tradisional Dengan Ritel Modern Di Kota Cirebon .,

Subarsono, D. (2014). Perbedaan Pelayanan Pada Ritel Tradisional Dengan Ritel Modern Di Kota Cirebon ., 2(2).

Wulandari, H. N. (2014). Pemanfaatan Algoritma Apriori untuk Perancangan Ulang Tata Letak Barang di Toko Busana.

Downloads

Published

2023-11-30

How to Cite

Wulan Dari, Dian Maya Sari, & Nurul Nazli. (2023). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Tas Branded Menggunakan Algoritma Apriori. Jurnal Sistem Informasi Dan Ilmu Komputer, 1(4), 266–277. https://doi.org/10.59581/jusiik-widyakarya.v1i4.2834