Perbandingan Algoritma Random Forest dan Logistic Regression Untuk Analisis Sentimen Ulasan Aplikasi Tumbuh Kembang Anak Di Play Store
DOI:
https://doi.org/10.59581/jusiik-widyakarya.v2i1.2262Keywords:
sentiment, child development, random forest, logistic regressionAbstract
Early childhood plays an important role in forming the basis of development, which involves stimulation of various aspects such as moral religious values, social emotional, language, cognitive, and physical motor skills. The concept of early childhood learning is focused on play, where every activity is designed to be play, so that learning becomes more effective. Parents also need to understand today's children's education to interact with children positively. This research focuses on sentiment analysis of children's education-based app reviews on the Google Play Store, using Random Forest and Logistic Regression methods. The review data is taken from three apps with the theme of child development, namely "About Kids", "PrimaKu", and "Teman Bumil", with a range of review years between 2018 and 2023. The test results show that Logistic Regression has higher accuracy compared to Random Forest, especially in the "About Kids" and "PrimaKu" applications with accuracy above 90%. The conclusion of this research highlights the importance of sentiment analysis in improving understanding of user responses to children's education applications, with suggestions for future research to increase the number of datasets and variations in testing schemes by tuning hyperparameters to improve prediction accuracy and more optimal results.
References
Anggraeny, F. T., Purbasari, I. Y., & Wulandari, E. F. (2019). Undergraduate Thesis Supervisor Recommendation Based On Text Similarity. INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND BUSINESS (ICITB) 5, Icitb 2019, 86–94. https://jurnal.darmajaya.ac.id/index.php/icitb/article/view/2077.
Hendriyanto, Muhammad Diki. 2022. ANALISIS SENTIMEN ULASAN APLIKASI MOLA PADA GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE. Journal of Information Technology and Computer Science (INTECOMS). Volume 5 Nomor 1, Juni 2022.
Juniarti, Y. Utoyo, Setiyo. & Ramadan, Gilang. 2021. Pengembangan Aplikasi Game Edukasi dalam Membentuk Karakter anak. WIDYA WACANA: JURNAL ILMIAH.
Kasanah, A. N., Muladi, M., & Pujianto, U. (2019). Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(2), 196–201. https://doi.org/10.29207/resti.v3i2.945.
Pangaribuan, Jefri Junifer. 2021.Mendeteksi Penyakit Jantung Menggunakan Machine Learning Dengan Algoritma Logistic Regression. Information System Development, VOLUME 6 NO.2 JULI 2021.
Saputra. 2021. ANALISIS SENTIMEN APLIKASI INVESTASI ONLINE DI GOOGLE PLAY STORE MENGGUNAKAN METODE ALGORITMA RANDOM FOREST.
Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. Stata Journal, 20(1), 3–29. https://doi.org/10.1177/1536867X20909688.
Sihananto, A. N., Safitri, E. M., Subagio, A. W., Ardiansyah, M. D., Primayudha, A. (2023). Classification of Covid-19 RT-PCR Test Results Using Auto-encoder And Random Forest. 7stInternational Seminar of Research Month 2022. NST Proceedings. halaman 237-243. https://nstproceeding.com/index.php/nuscientech/article/view/944/898.
Wahyudi, R., & Kusumawardana, G. (2021). Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine. Jurnal Informatika, 8(2), 200–207. https://doi.org/10.31294/ji.v8i2.96 81.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammad Alfyando, Fetty Tri Anggraeny, Andreas Nugroho Sihananto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.