Implementasi Algoritma Decision Tree untuk Klasifikasi Serangan Jantung
DOI:
https://doi.org/10.59581/jusiik-widyakarya.v1i4.1895Keywords:
heart disease, Prediction, Decision TreeAbstract
As many as 7.3 million people worldwide die from heart disease. This indicates that heart disease is one of the diseases that cause the most deaths. As a preventive effort in handling heart disease, it is necessary to predict heart disease in patients. The classification process to predict heart disease is done using a decision tree. This decision tree is interesting because it is more flexible in providing the advantage of visualizing the advice so that the prediction can be observed. This study uses Heart Disease Prediction Dataset data with a total of 303 data. Then predictions are made using Decision tree so that the accuracy results are 83.60%, precision 89.28%, recall 78.12% and F1 score of 83.33%.
References
D. Haganta Depari et al., “Perbandingan Model Decision Tree, Naive Bayes dan Random Forest untuk Prediksi Klasifikasi Serangan Jantung,” JURNAL INFORMATIK Edisi ke, vol. 18, p. 2022.
J. Khatib Sulaiman, A. A. Mizwar Rahim, I. Yanuar Risca Pratiwi, M. Ainul Fikri, and U. Amikom Yogyakarta, “Klasifikasi Serangan Jantung Menggunakan Metode Synthetic Minority Over-Sampling Technique Dan Random Forest Clasifier,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 5, pp. 2023–2995.
J. Homepage et al., “MALCOM: Indonesian Journal of Machine Learning and Computer Science Implementation of Decision Tree Algorithm and Support Vector Machine for Lung Cancer Classification Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Serangan Kanker Paru,” vol. 3, pp. 15–19, 2023.
P. Kurnia Illahi, A. Rina Viana, N. Fitria, M. Permata, and M. Y. Pratama, “SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat Application of Decision Tree Algorithm and Linear Regression for Breast Cancer Classification Penerapan Algoritma Decision Tree aan Regresi Linear untuk Klasifikasi Kanker Payudara.” [Online]. Available: https://journal.irpi.or.id/index.php/sentimas
M. Ula, F. T. T. Anjani, A. F. Ulva, I. Sahputra, and A. Pratama, “APPLICATION OF MACHINE LEARNING WITH THE BINARY DECISION TREE MODEL IN DETERMINING THE CLASSIFICATION OF DENTAL DISEASE,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 6, no. 1, pp. 170–179, Jul. 2022, doi: 10.31289/jite.v6i1.7341.
A. Irma Purnamasari and A. Rinaldi Dikananda, “Klasifikasi Kualitas Berita Pada Majalah Menggunakan Metode Decision Tree,” Jurnal Teknologi Ilmu Komputer, vol. 1, no. 2, pp. 48–54, 2023, doi: 10.56854/jtik.v1i2.52.
M. Ula, A. F. Ulva, M. Mauliza, M. A. Ali, and Y. R. Said, “APPLICATION OF MACHINE LEARNING IN DETERMINING THE CLASSIFICATION OF CHILDREN’S NUTRITION WITH DECISION TREE,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 5, pp. 1457–1465, Sep. 2022, doi: 10.20884/1.jutif.2022.3.5.599.
H. Rifa, R. Hamonangan, and D. Ade Kurnia, “KOPERTIP: Jurnal Ilmiah Manajemen Informatika dan Komputer Implementasi Algoritma Decision Tree Dalam Klasifikasi Kompetensi Siswa”, [Online]. Available: http://jurnal.kopertipindonesia.or.id/
Bilal Husain, M “Heart Disease Prediction” September. 2023. Available: https://www.kaggle.com/code/bilalchanna/heart-disease-prediction (accessed Nov 20, 2023).
Mitchell, T. M. 1997. Machine Learning. McGraw-Hill.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammad Akram Fais, M. Revano Ananda Lubis, Annisa Aulia, Indri Syafitri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.