Penggunaan Metode Text Mining Untuk Mengekstrak Informasi Penting Dari Teks Laporan Penelitian
DOI:
https://doi.org/10.59581/jmpb-widyakarya.v1i4.1961Keywords:
Text Mining, Report, Extract, InformationAbstract
This research explores the use of Text Mining Methods as an innovative approach to extract important information from research report text. With a strong conceptual foundation from the literature review, this research details the key concepts of Text Mining, such as tokenization techniques, sentiment analysis, and entity extraction. The steps of applying Text Mining Methods to research reports are explained in depth, with a focus on using such techniques to improve the efficiency and accuracy of information extraction. Through the evaluation of the method's performance, the research demonstrates a significant improvement in analysis speed and information extraction accuracy compared to conventional methods. The research conclusions provide a holistic picture of the potential of Text Mining Methods in improving the effectiveness of the research report text analysis process. The implications of this research stimulate thoughts on the applicability of this technology in various disciplines that rely on research reports as a primary source of information. Thus, this research makes a positive contribution to the understanding and development of text analysis techniques to support more efficient decision making.
References
Hudin, M. S., Fauzi, M. A., & Adinugroho, S. (2018). Implementasi Metode Text Mining dan K-Means Clustering untuk Pengelompokan Dokumen Skripsi (Studi Kasus: Universitas Brawijaya). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(11), 5518–5524. Diambil dari https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/3332
Thenata, A.P. (2021) Text Mining Literature Review on Indonesian Social Media. Jeping : Jurnal Edukasi & Penelitian Informatika 7(2). https://dx.doi.org/10.26418/jp.v7i2.47975.
Mailoa, F.F & Lazuardi, L. (2021). Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang Masalah Obesitas di Indonesia. Journal of Information Systems for Public Health 6(1). https://doi.org/10.22146/jisph.44455
D. A. Agustina, S. Subanti, and E. Zukhronah, “Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Marketplace di Indonesia Menggunakan Algoritma Support Vector Machine,” Indones. J. Appl. Stat., vol. 3, no. 2, p. 109, 2021, doi:10.13057/ijas.v3i2.44337
S. Kumar, A. K. Kar, and P. V. Ilavarasan, “Applications of Text Mining in Services Management: A Systematic Literature Review,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 1, p. 100008, doi: 10.1016/j.jjimei.2021.100008.
Kannan, M., Gurusamy,S., Vijayarani, V., Ilamathi, J. & Nithya, (2014) “Preprocessing Techniques for Text Mining Preprocessing Techniques for Text Mining,” Int. J. Comput. Sci. Commun. Networks, vol. 5, pp. 7–16
Mustaqim, T, Umam, K. & Muslim, M.A. (2020). Twitter Text Mining for Sentiment Analysis on Government’s Response to Forest Fires with Vader Lexicon Polarity Detection and K-Nearest Neighbor Algorithm,” J. Phys. Conf. Ser., vol. 1567, no. 3, 2020, doi: 10.1088/1742-6596/1567/3/032024
Lubis, Y., & Ritonga, A. (2023). Mobilization School Program: Implementation of Islamic Religious Education Teacher Preparation in Elementary Schools. Jurnal At-Tarbiyat :Jurnal Pendidikan Islam, 6(1). https://doi.org/10.37758/jat.v6i1.632
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Fitriani Lubis, Kartika Budi Ayuningtyas, Sagina Rahmadani, Zefanya Purba, Lukas Destria Putra Ginting, Rizky Afanin Syahrani, Jonathan Andrew, Wira Prayoga
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.